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Random walks on percolating clusters with energetic disorder? 
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Abstract. Single random walker simulations on energetically disordered percolation clusters 
(in two dimensions) are presented. Exponential, Gaussian and uniform site energy distribu- 
tions are investigated. The superposition of spatial and energetic disorder leads to reduced 
random walk ranges with decreasing temperature. An analogue subordination rule is 
derived: random walk on an energetically disordered fractal is equivalent to that on a 
geometrical fractal with a lower spectral dimension. This rule is strictly followed for the 
exponential distribution but only approximately for the Gaussian and uniform distributions. 
The last two distributions, and especially the uniform one, show a crossover behaviour 
analogous to that of random walks on percolation clusters away from criticality. 

1. Introduction 

Random walks have been used extensively in the study of diffusion processes and 
diff usion-limited reactions. Recent interest has focused on disordered systems involving 
fractal-like geometries and/or fractal time [ 1-41. Geometric (spatial) disorder is often 
introduced as a binary random lattice, i.e. the percolation problem [5,6]. Temporal 
disorder is introduced [ 1,2,7] by using a random distribution of time intervals between 
events, $( t ) .  In the fractal approach the spatial disorder is characterised [ 1-61 via the 
fractal dimension df and the spectral dimension d ,  . The temporal disorder characterised 
by the distribution $( t )  has a long-time tail of the form $( t )  - t - ' -P .  The superposition 
of fractal geometry and temporal disorder results in a reduced effective spectral 
dimension pd, where p < 1. This has been called a subordination effect [l, 41. 

It is well known that temporal disorder usually arises due to energetic disorder 
[ 1-4,7]. The fractal-like aspects of random walks on energetically disordered Euclidean 
and fractal lattices have also been described recently [6,8,9]. Essentially this energetic 
disorder introduces a temperature-dependent fractal-like distribution of waiting times, 
obtained by a Boltzmann-weighted probability for moves to sites with higher energy 
[3,6,8,9]. A major question of interest is whether an analogue subordination rule 
can be applied to random walks on such temperature-dependent fractal-like domains 
[9]. Specifically, it is interesting to investigate whether effective spectral dimensions 
can be assigned for each given temperature (resulting in an analogue subordination 
rule). 

t Supported by NSF grant DMR-8303919. 
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In the current paper we introduce energetic disorder on a percolating cluster exactly 
at criticality (which has an exact fractal structure [5]). Each site of the p,ercolating 
cluster is assigned a random energy and the particle random walk is monitored via a 
Boltzmann-weighted probability for transfer to a site with a higher energy, effectively 
bringing in a temperature-dependent distribution [3]. 

A particle moves from site i to one of its z nearest neighbours, site j ,  with probability: 

or remains on site i with probability: 

z 

Pii = 1 - c Pii. 
j = l  

The assignment of the site energies is done using uniform, exponential and Gaussian 
distributions. The customary random walk properties, the mean-square displacement, 
(RL) ,  and the mean number of sites visited, ( S N ) ,  are used to monitor these processes. 

2. Method of calculations 

The following algorithm was used in this study. First a two-dimensional square lattice 
was constructed (size 300 x 300) made of open and closed sites with the probability 
of open sites p being specified equal to the square lattice critical percolation probability 
pc = 0.593. The largest cluster was isolated using the well known CMLT (cluster multiple 
labelling technique), and all further work was confined to this cluster [5]. Each cluster 
site was assigned an energy value (in the range 0-30000 arbitrary units) at random, 
according to one of three distributions: (a )  uniform, ( b )  exponential, (c) Gaussian. 
The common random number generator RAN (by DEC) was used to generate the 
uniformly distributed random number RI (in the interval O <  RI < 1.00). The formula 
X I  = -log RI was used for generating the exponential distribution by use of the previous 
RI,  and finally the known subroutine GRAND was used for the Gaussian distribution, 
also using the R,. Thus, the energies were set as follows. In ( a )  E, = (30 000)R,, and 
the average energy is E = 15 000 arbitrary units. ( b )  If X ,  G 0.001 then XI was set equal 
to X ,  = 0.001. If X ,  3 10 then X ,  was set equal to XI = 10. Finally, E, = (3000)X,. (c) 
The mean of the distribution was set equal to 0.0; the standard deviation (T = 1.0. If 
X ,  < -3 then X ,  was set equal to XI = -3. If XI > 3 then X I  was set equal to X = 3. 
Finally E,  = ( X L  +3) (5000), i.e. the mean energy value is E = 15 000 arbitrary units. 
The jump probabilities were set as follows: p = 0.25 if the neighbour site has equal or 
lower energy; p = 0.25 exp(-AE/kT) if the neighbour site has higher energy, with A E  
being the energy difference and T a reduced temperature (as the constant k was set 
equal to 30 000). All p (for the four-neighbour sites) are added up, with the remainder 
probability (difference from 1,000) taken to be the probability that the particle remains 
at its original site. Each run is followed for 10000 time steps. The quantities we 
monitor are S N ,  the number of distinct sites visited at least once in N steps, and RL,  
the square of the displacement in N steps. We used reduced temperatures of T = 1 .O, 
0.5, 0.25, 0.15, 0.10 for the uniform distribution; T =  1.0, 0.10, 0.05, 0.03, 0.01 for the 
exponential and Gaussian distributions. Each calculated value is the average of 1000 
realisations. 
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3. Results and discussion 

I. 

I 1 I 

In figure 1 we plot (S , )  against time in log-log form for several values of the reduced 
temperature T. The linearity of these curves immediately suggests a form: 

( S N )  - Nf N + W  (3) 

f -- 0.63 -- d, /2 (4) 

where f is the slope of the appropriate curve in this figure. At high temperatures 

where d,  is the spectral dimension, in parallel with the f values for normal random 
walk [ 5 ]  on percolating clusters with no energetic disorder. For the latter, it has been 
found [ 5 ]  that f = 0.65 *0.02 for two-dimensional lattices (while f = 0.666 for d 2 3). 
The lower temperatures illustrate the effects of subordination due to the superposition 
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Figure 1. Mean number of distinct sites visited, ( S N ) ,  by a single particle, as a function 
of time, for a series of reduced temperatures T as follows, reading from top to bottom: 
( a )  uniform, T =  1.0, 0.5, 0.25, 0.15, 0.10; ( b )  exponential, T =  1.0, 0.1, 0.05, 0.03, 0.01; 
( c )  Gaussian distributions of energies, T = 1.0, 0.1, 0.05, 0.03, 0.01. 
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of energetic disorder on a fractal, which is analogous to the superposition of temporal 
disorder on a fractal [l ,  31. Thus, we observe in table 1 that in ( a )  f goes down to 
about 0.37 while in ( b )  and (c) it goes down to about 0.16 and 0.04, respectively. Also, 
it is interesting to observe in figure 1 that at the lowest temperatures, T = 0.01, the 
linearity of the curves is preserved in cases ( 6 )  and (c) while this is not so in case ( a ) ,  
where a curvature appears. This behaviour resembles the crossover behaviour in 
percolation clusters away from criticality [ 5 ] .  It has also been observed for random 
walk on energy disordered Sierpinski gaskets [9]. Thus, energetic disorder at the critical 
point preserves the fractal character and, for high temperatures, gives numerically the 
same fractal exponent (spectral dimension) as the underlying spatial structure. 

Similar behaviour is observed in figure 2, which is a plot of R’, against time, also 
in log-log form. The resulting curves also suggest the known relation [lo] 

(R’,) - N2’D N + W  

where D is derived as the slope of the straight lines at high temperatures. Here, for 
T = 1, D = 2.81 (uniform), D = 2.88 (exponential) and D = 2.83 (Gaussian) in these 
various energy disorder cases, as compared to D = 2.80 for the pure spatial disorder 
[lo]. The lower T curves give slopes that lead to progressively increasing D values, 
illustrating again the subordination effect (see table 1). 

In figure 3 we plot the value of f  (left y axis) and the value of p (right y axis) as 
a function of the reduced temperature T for all three energy distributions. Table 1 
describes the exponents f and D as a function of T for all three energy distributions. 
The f exponents in table 1 can be written as f = pdJ2 where d s / 2  = 0.63 and p is a 
function of temperature, with p + 1 as T + 1. Obviously, here p does not describe a 
time distribution but a hopping probability distribution, which is determined by the 
temperature and the energy distribution. Within the above context of p we obtain a 

Table 1. Exponents f and D. 

f 
Uniform Exponential Gaussian 

- 

T f T f T f 

1.0 0.63 1.0 0.63 1.0 0.63 
0.5 0.62 0.1 0.58 0.1 0.5 1 
0.25 0.59 0.05 0.49 0.05 0.29 
0.15 0.50 0.03 0.40 0.03 0.16 
0.10 0.37 0.01 0.16 0.01 0.04 

D 
Uniform Exponential Gaussian 

7’ D T D T D 

1 .o 2.81 i .3 2.88 1.0 2.83 
0.5 2.86 0.1 3.02 0.1 3.38 
0.25 2.93 0.05 3.51 0.05 5.61 
0.15 3.76 0.03 4.23 0.03 9.63 
0.10 4.46 0.01 10.90 0.01 36.91 
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Figure 2. Mean-square displacement, ( R L )  as a function of time, for a single-particle 
random walk, for a series of reduced temperatures, T, the same as in figure 1: ( a )  uniform; 
( b )  exponential; (c )  Gaussian distributions of energies. 

behaviour that is completely analogous to the Blumen-Klafter-Zumofen ( BKZ) subordi- 
nation rule [1,4]. The BKZ work addresses the combined effect of disorder, derived 
from two different contributions: (1) the fractal structure and (2) the CTRW mechanism. 
The two processes combine asymptotically in a multiplicative manner. The present 
work has disorder incorporated from: (i) the fractal structure and (ii) the site-energy 
distribution, producing a random walk with jumps that are temperature dependent. 
Thus, here, we speak of an analogy between the BKZ work and ours, but not of an 
exact parameter-for-parameter comparison. In a recent work Tamor [ 111 has also 
treated thermally activated random walks in energetically disordered lattices. However, 
his work is restricted to geometrically ordered lattices, as opposed to the present work 
on energetically disordered fractal structures (percolation cluster). Tamor also 
emphasises both the analogy and the difference between the traditional CTRW approach 
[7] and the energy-disorder-based variable range hopping [ 6 ] ;  comparing parameters 
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Figure 3. Exponent f; as a function of the reduced temperature, for the uniform (squares), 
exponential (triangles) and Gaussian (circles) distribution of site energies. 

directly leads to puzzling results regarding the role of the temperature. This dilemma 
should be solved for the cubic (or square) lattice before it is addressed for the more 
complicated fractal media (percolation cluster). 

Using the calculated f (or p )  values we now form the waiting-time distribution 
functions $ ( t )  for all three cases of the energy distribution. The result is given in 
figure 4, where we have plotted $ ( t )  against time for T =  1.0 and T=0.1. We notice 
that, since all three distributions (uniform, exponential, Gaussian) have the same 
effective dimension c f =  0.63), for T = 1.0, $ ( t )  is identically the same function. 
However, for T=0.1, we find three different curves (shown in figure 4), i.e. for any 

Time 

Figure4. Waiting-time distribution I)( t )  against time. This $( t )  is derived from the equation 
I)(t) = t - ( ' * @ )  using the proper p values from table 1. Shown are the cases (top to bottom): 
T =  1.0 (all three distributions), T =  0.1 (uniform), T =  0.1 (exponential), T =  0.1 
(Gaussian). 
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given waiting time, $ ( t )  decreases as one goes from the uniform to the exponential 
to the Gaussian distribution. 

4. Conclusions 

The basic power law relation for the number of distinct sites visited, equation [3], is 
a good approximation for energetically disordered fractals (percolating clusters) with 
temperature-dependent Boltzmann weighting factors. This relationship works well 
over a wide range of temperatures. The differences between the exponential, Gaussian 
and uniform site-energy distributions are small. However, the uniform and Gaussian 
distributions show some kind of crossover behaviour at low temperatures. On the 
other hand, the exponential distribution gives a genuine fractal-like behaviour, i.e. it 
closely follows equation (3). The exponential distribution provides a clear-cut analogue 
of the subordination rule. Even the Gaussian and uniform distributions follow such 
an analogue subordination rule to a good approximation. 
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